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Parallel Simulation of Chip-Multiprocessor Architectures 
 

Matthew C. Chidester and Alan D. George 
 
Abstract—Chip-multiprocessor (CMP) architectures present a challenge for efficient simulation, 
combining the requirements of a detailed microprocessor simulator with that of a tightly-coupled 
parallel system.  In this paper, a distributed simulator for target CMPs is presented based on the 
Message Passing Interface (MPI) designed to run on a host cluster of workstations.  
Microbenchmark-based evaluation is used to narrow the parallelization design space concerning 
the performance impact of distributed vs. centralized target L2 simulation, blocking vs. non-
blocking remote cache accesses, null-message vs. barrier techniques for clock synchronization, 
and network interconnect selection.  The best combination is shown to yield speedups of up to 16 
on a 9-node cluster of dual-CPU workstations, partially due to cache effects. 
 
Index Terms—Chip-multiprocessor, parallel simulation, MPI, SCI, Myrinet 
 

1 INTRODUCTION 

Simulation is an important tool in the development of new microprocessors.  A design must be 

rigorously validated prior to implementation to ensure that it is both functionally correct and 

performs well.  A large range of test cases must be explored while many configurations are 

compared to optimize the design.  As microprocessors become more complex, encompassing both 

a larger number of transistors and numerous architectural features for increased performance, the 

design space that must be evaluated through simulation explodes. 

In the design of parallel systems, simulation times are increased further by the need to 

simulate multiple processors, a still wider range of inputs, and larger datasets.  One technique for 

reducing the simulation time is to scale datasets down in size [8], but this approach introduces 

inaccuracies and necessitates a detailed analysis of each workload to determine which part(s) can 

be safely scaled.  Another performance enhancement involves simplified processor models with 

an emphasis on accurate memory subsystem and interconnect simulation [24].  However, these 

simplified models do not reflect the behavior of modern superscalar, out-of-order processors.  A 

third method to address simulation explosion is to make use of parallel simulation. 
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Parallel simulation employs multiple processing nodes to increase the simulation rate. A 

common approach is to perform separate simulations for different settings of parameters—i.e. 

cache sizes, workloads, datasets, etc.—simultaneously on different processors of a parallel 

system.  While this approach can greatly increase the throughput of the simulations, it does not 

reduce the latency required for a single simulation to finish.  Often, a designer desires rapid 

feedback regarding a specific change in order to guide future decisions.  For such situations, low-

latency turnaround time is preferable to high throughput.  Parallel simulation of event-driven 

models such as logic- and circuit-level evaluation has been successful in reducing these 

computationally intensive tasks.  However, many of the architectural design choices for modern 

uniprocessors must be made early in the design cycle with the aid of a fast “performance model” 

that is often written in C or C++ [28].  Parallel simulation has been applied to such systems in the 

past [29],[24], but has been limited to modeling loosely-coupled, distributed shared-memory 

(DSM) systems and used direct-execution to model the individual processing elements. 

Future systems are likely to be composed of multiple processors integrated on a single die 

known as chip-multiprocessors (CMPs).  The CMP has been the subject of many research projects 

[9],[17],[13],[3] as well as commercial implementations such as IBM’s Power4 [20] and HP’s 

Mako [19].  CMPs reduce the impact of interconnect delay on clock frequency [1] and reduce 

design time by making use of repeated, regular structures.  A CMP also lends itself to parallel 

simulation:  the processors in a large target CMP can be distributed to different nodes of a host 

parallel machine and simulated simultaneously.  However, the tight coupling of the processors on 

a CMP with a shared L2 cache and the low latency of such accesses serve to increase the 

communication demands of a parallel CMP simulator over that of a DSM system. 

This paper explores the parallel simulation of a CMP on a distributed host system consisting 

of commercial off-the-shelf (COTS) workstations connected with a high-speed network [2].   For 
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portability, the simulator uses the Message Passing Interface (MPI) [23] for inter-node host 

communication.  Several parallelization schemes are evaluated, including a distributed target 

cache model vs. a centralized scheme, blocking vs. non-blocking accesses to the remote cache, 

and the use of null-messages vs. barriers to maintain clock synchronization.  Microbenchmarks 

are used to evaluate the performance of each alternative prior to constructing the full simulator.  

Two popular system-area networks (SANs), the Scalable Coherent Interface (SCI) [31] and 

Myrinet [4], are also evaluated as the interconnect for the host platform. 

In the next section, conventional performance modeling of a CMP and common parallel 

simulation methods are introduced.  Section 3 describes several parallelization approaches 

considered for the CMP simulation.  In Section 4, the alternate approaches are studied through the 

use of MPI-based microbenchmarks running on the target platform to quantify the tradeoffs 

associated with each.  Section 5 demonstrates the performance of a parallel CMP simulator based 

on the algorithm selected from the microbenchmarks.  Section 6 provides a discussion of related 

research.  Finally, Section 7 contains conclusions and avenues for future research.  

2 BACKGROUND 

In order to understand the design challenges of a parallel simulator for a CMP, it is important to 

consider the state-of-the-art in sequential simulations of uniprocessor and multiprocessor systems.  

Also, there are many approaches that can be used to parallelize a sequential simulation.  In this 

section, both issues are addressed separately. 

2.1 Sequential Simulation of a Microprocessor 

Traditional, sequential simulation for performance modeling of a microprocessor typically 

achieves the fastest simulation rate by employing some form of trace-driven simulation.  In trace-

driven simulation, application code is run through a fast, functional simulator or on an existing 

machine (perhaps even of a different architecture from that being simulated).  A “trace” of 
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important activities is logged, consisting of a sequence of decoded instructions with specified 

input and output dependencies, memory accesses, and branch instructions.  The trace is then fed 

into a timing simulator to determine the execution time of the instruction sequence given stalls 

due to dependencies, cache misses, and branch mispredictions. 

Because the trace files have a tendency to grow rather large, in practice they can be generated 

dynamically at the front-end of the simulator.  This approach also allows simulation of 

mispredicted instructions, an effect that has been shown to cause cache pollution and significantly 

impact performance [32].  Figure 1 shows a block diagram of a sequential simulator such as 

SimpleScalar [5].   

Application
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Figure 1.  Trace-driven simulation of a uniprocessor using a sequential simulator. 

The front-end of the simulator maintains the programmer-visible register state including the 

program counter and the memory space occupied by the simulated application code.  In order to 

simulate mispredicted instructions, branch prediction is also performed by the trace generator.  In 

this respect, trace generation performs the same duties as the fetch stage in a pipelined 

microprocessor.  The back-end consists of a timing simulator which feeds the trace through the 

complete pipeline, stalling on register dependencies and cache misses when appropriate.   The 

timing simulator notifies the trace generator when a mispredicted instruction is retired so that a 

new trace can begin from the correct path. 

The instruction trace is generated by executing each instruction as soon as it is fetched.  By 

executing instructions in-order, the outcome of all branches can be immediately known.  This 
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technique allows simulation of key boundary conditions, such as perfect branch prediction.  More 

importantly, it allows the remainder of the timing simulation to know a priori when an instruction 

is on a mispredicted path, greatly simplifying the recovery of speculative state when a 

mispredicted branch is resolved.   

2.2 Sequential Simulation of a CMP 

A chip-multiprocessor consists of multiple processors integrated on a single die.   Unlike 

conventional symmetric multiprocessors (SMPs) that share only a common memory space, the 

processors in a CMP interface at a common cache level such as the L2 cache [25].  An example of 

a 4-processor CMP is shown in Figure 2. 

CPU 2

L1 Cache L2
Cache

CPU 4

L1 Cache

Branch Prediction

Branch Prediction

CPU 1

L1 Cache

CPU 3

L1 Cache

Branch Prediction

Branch Prediction

 
Figure 2.  Organization of a CMP. 

To enable simulation of such a CMP, the simulation of each processor is interleaved on a 

clock-cycle basis.  In a sequential simulation, the outermost loop simulates a single clock cycle 

for each CPU in the CMP before incrementing the clock-cycle counter and repeating the loop.   

This approach enforces time-ordered consistency between each processor in the CMP.  By 

incrementing the cycle counter only when all processors have completed execution of that cycle, 

any external effects which one processor may have on another are maintained. 

In the CMP configuration shown in Figure 2, the only external effects which one processor 

may have on another involve accesses to the shared L2 cache and, by extension, the global 

memory.  Maintaining coherency of each processor’s view of this shared resource is another 

major issue in parallel simulation. 
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For the CMP architectures evaluated in this paper, a Modified-Shared-Invalid (MSI) protocol 

[18] is used to enforce coherency between the L1 caches and the shared L2 cache.  A given cache 

line in the modified state indicates that only one L1 cache contains that data and both read and 

write access is permitted.  A line in the shared state may be present in multiple L1 caches and is 

therefore read-only.  If a processor desires write access to a shared line, it must first request 

exclusive access through the L2.  The L2 cache will invalidate any other shared lines and grant 

the access.  A line that is not present in any cache is said to be in the invalid state.  

2.3 Parallel Simulation Techniques 

Research in the area of parallel simulation techniques focuses primarily on event-driven 

simulation.   In a parallel, event-driven simulation, each parallel process maintains a queue for 

locally generated events and separate queues for events generated by each remote process that 

will influence the local process.  Events are processed in-order, with the event having the smallest 

timestamp of those in any queue, local or remote, processed first. 

The challenge in parallel simulation is insuring that events are processed in globally 

consistent order.   That is, an event can only be processed by the destination node when it can be 

sure that no events with an earlier timestamp will arrive at a later time.  One way to ensure such 

consistency is to wait until all remote input queues contain at least one event before selecting the 

one with the lowest timestamp. 

Such a scheme can easily lead to deadlock situations when there are no events generated for a 

particular remote process.  A common method to avoid this situation is to employ lookahead and 

null messages [6].   If a process is deadlocked waiting for an event from one or more remote 

processes, it will send a null message to the other processes in the system.  The null message 

represents an event that does not require any action but indicates the earliest timestamp for which 

an actual event may be received from the source node.   
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This timestamp is computed by taking the current time step of the source node plus a 

lookahead value.  The lookahead value is system-dependent and represents any processing time 

that would be applied to incoming events before an outgoing event can be generated.  An example 

of null-message-based synchronization applied to a CMP will be provided in Section 3.3. 

The use of lookahead and null messages can result in a significant level of generated null-

message traffic, particularly if the lookahead is small or if the processes infrequently generate 

events destined for remote nodes [10].  Another method is to use barrier synchronization [14].   

In this approach, all processes process events freely up to a certain timestep and then wait for all 

other processes to reach the same timestep.  If the barrier interval is selected based on the 

lookahead value, each process is guaranteed to have received any remote events that may 

influence the current barrier-bounded interval prior to the barrier at the beginning of the interval. 

3 PARALLEL SIMULATION APPROACHES FOR A CMP 

In this section, the parallel simulation techniques presented in the previous section are combined 

with simulation of multiprocessors to produce several alternatives for parallel simulation of a 

CMP.  For performance reasons, architecture-level simulations of microprocessors are cycle-

driven rather than event-driven.  Typically, hundreds of events occur each clock cycle in a 

speculative processor, making the overhead of event queues too costly.  Therefore, traditional 

event-driven parallel simulation is not directly applicable to a CMP. 

However, as noted previously, a CMP can be viewed as a collection of independent 

processors that can only affect one another through the memory hierarchy.  If the architecture of 

Figure 2 is assumed, all such external events will occur through the shared L2 cache.  While a 

single processor may access memory multiple times per clock cycle, modern L1 caches provide 

hit rates in excess of 95%, so accesses to the L2 cache are relatively infrequent.  
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In this paper, we adopt a scheme similar to [29] where the processor and L1 caches are 

modeled with conventional, cycle-driven simulation techniques, but parallel, event-driven 

simulation is applied between each L1 cache and the shared L2.  However, the processor model is 

more detailed along the lines of those in [5] or [26] than the direct execution used in [29].   

Because L2 accesses are infrequent and have a high latency in terms of the simulated timespace, 

the simulation can be parallelized using a message-passing approach, allowing use of cost-

effective and scalable distributed systems as the underlying simulation platform. 

The following discussion assumes that the parallel simulation will be divided into one or 

more threads for concurrent execution.  The mapping of threads to nodes on the simulation 

platform will be considered later. 

3.1 Centralized vs. Distributed L2 Parallelization 

One design choice for parallelization involves the shared L2 cache.  The most straightforward 

approach is to simulate the target’s L2 cache in a dedicated thread on the host and each target 

processor in a separate thread, as shown for a p-processor CMP in Figure 3a.  The dotted lines in 

this figure indicate that each target processor and associated L1 cache are simulated in a 

processor thread while the L2 and memory subsystems are handled by the L2 thread.  The L2 

thread also models the desired interconnect and contention between processors.  It is possible for 

each processor thread to handle more than one target processor/L1 pair when p exceeds the 

number of processor threads, N, although in this typical example, N = p and the total number of 

threads is p + 1.  

The centralized approach has several disadvantages.  First, by requiring a thread dedicated to 

L2 transactions, the parallel efficiency is reduced.  Parallel efficiency is defined as the speedup 

divided by the number of processors in the simulation platform, where speedup is the execution 

time of a sequential simulation divided by the execution time of the parallel simulation.  Since the 



© 2002, HCS Research Lab, U. of Florida.  All Rights Reserved. 

 9

speedup is limited to N, the parallel efficiency is at most N / (N+1) which is poor for small N.  For 

large N, the centralized L2 becomes a bottleneck.  To alleviate the first problem, one of the 

processor threads can take on the dual role of simulating one or more target processor/L1 pairs 

and the L2 cache.  However, this approach limits the performance of the target processor 

simulations of that thread, requiring the other processor threads to wait on the slower thread. 

       

P1P0 P2 Pp

L2

L1 L1 L1 L1

Memory

Processor Threads

L2 Thread

                  

P1P0 P2 Pp

L2

L1 L1 L1 L1

Mem

L2

Mem

L2

Mem

L2

Mem

Processor Threads

           
              a) Centralized L2 simulation     b) Distributed L2 simulation 

Figure 3.  Centralized vs. distributed simulation of the L2 cache. 

An alternative approach is to distribute the simulation of the L2 cache across all processor 

threads and eliminate the L2 thread as in Figure 3b.  While this figure assumes p = N, each host 

thread can simulate multiple target processor/L1 pairs as well as part of the L2 cache when p > N.  

The memory space is interleaved on a cache-block basis with each thread having responsibility 

for all accesses to a particular bank of memory.  If lower-order interleaving is used, the accesses 

should be relatively evenly distributed, allowing the performance to scale as N is increased. 

One drawback to a distributed L2 simulation is the potentially high cost to simulate 

contention.  If the number of target L2 cache ports must be limited to fewer than N or if modeling 

a non-banked cache is required, each portion of the L2 must communicate with the other portions 

to arbitrate for access.  Another drawback involves maintaining a global view of the clock.  With 

a centralized L2 simulation, all-to-one and one-to-all communication can be used to maintain 

clock synchronization, but a distributed L2 simulation requires costly all-to-all communication. 
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The performance of either approach depends on the frequency of cache accesses and clock 

synchronization events in the target system as well as the number of threads tasked to the 

simulation on the host.  These tradeoffs will be evaluated in greater detail in Section 3.3. 

3.2 Blocking vs. Non-blocking L2 Requests 

Another design decision with a large potential effect on parallel simulation performance involves 

the accesses to the target L2 cache.  Traditional, sequential simulators applying a trace-driven 

approach as in Figure 1 decouple the memory access from cache hit checking.  In simulations of 

CMP architectures, the cache access is integral to the data access due to the need to maintain 

coherency.  Therefore, the trace generator must perform memory transactions through the cache 

logic.  With either centralized or distributed L2 parallelization, a remote access is required on the 

host to obtain the data for every L2 access in the target. 

Decode Rename Issue Execute WB RetireFetch

L2 Access
 

a)  Blocking L2 Access 

Fetch

L2 Request
Made

L2 Response
Required

L2 miss cycles

Decode Rename Issue Execute WB Retire

 
b)  Non-blocking L2 Access 

Figure 4.  Blocking vs. non-blocking accesses to the L2 cache. 

Supporting trace-driven cache accesses requires the accesses to be blocking.  That is, each 

target memory reference is processed in order by the front-end of the simulator to satisfy 

dependencies before moving on to the next instruction.  Figure 4a demonstrates the placement of 

the L2 accesses of such a simulation on a processor with 7 pipeline stages similar to that which 
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will be used later in this paper.  Trace generation occurs during the fetch stage of each instruction, 

so the processor thread must block until a response from the remote L2 is received.   

As mentioned in Section 2.1, trace-driven simulation greatly simplifies the task of handling 

mispredicted instructions.  However, requiring blocking access to the L2 cache in a parallel 

simulation is a significant disadvantage.  The L2 transactions now initiate a remote transaction 

and therefore have a much higher latency than in a sequential simulation.  While the transaction is 

outstanding, no other instructions in the simulated processor can be fetched, limiting performance.  

Another disadvantage to trace-driven simulation is that it introduces inaccuracies in modeling 

parallel systems due to imprecise timing of events.  Such inaccuracies can profoundly impact  the 

outcome of shared accesses such as lock contention.  Depending on the desired level of detail in 

the target platform, such a scheme may be undesirable from a purely functional standpoint.    

An alternative approach is to allow non-blocking accesses to the L2 cache as in Figure 4b.  

This approach more closely resembles the timing and execution of instructions in hardware than 

the trace-driven approach.  The request is performed when all input dependencies are satisfied and 

the instruction is issued.  Since an L1 miss will have a latency of several cycles in the target 

processor even if it hits in the L2, the simulation can continue for a number of cycles before the 

response from the L2 is required in the writeback stage.  In this manner, the host communication 

latency for the remote L2 transaction can be hidden. 

The major disadvantage of a non-blocking approach is added simulator complexity.  Trace-

driven simulation is no longer employed and branch mispredictions are not readily identifiable.  

3.3 Null-message vs. Barrier Synchronization 

Both the null-message and barrier synchronization approaches described in Section 2.3 can be 

straightforwardly applied to the interface between the target L1 and L2 caches in a parallel CMP 
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simulator.  In both cases, the timestep for synchronization is based on the target L2 cache access 

time in terms of simulated clock cycles. 

For example, in a CMP system where events are generated between the target processors and 

the shared L2 cache with directory-based coherency, the lookahead interval would be the target 

L2 cache access time, L, where “cache access time” refers to the minimum number of cycles from 

the time an L2 request is issued to the time that the L2 returns the data on a cache hit without any 

coherency misses for the desired target system.  For simplicity, it is assumed that a coherence 

miss will not generate any traffic (i.e invalidate requests, state downgrades, etc.) before this time, 

but systems such as that of a snoopy bus could also be modeled if the lookahead is adjusted 

accordingly.   If the L2 has processed all events up to and including time t, the earliest time that 

an event destined from the L2 to a processor (e.g. the data returning or a cache line invalidation) 

can be generated is t + L.  The L2 could send a null message to each host processor thread 

indicating that it is safe to proceed up to time t + L without the possibility of receiving an event 

with an earlier timestamp from the L2. 

Similarly, the barrier synchronization approach requires all host threads to wait at a barrier 

every L clock cycles.  In this manner, requests issued prior to a barrier can only affect events after 

the barrier.  As long as messages are received in-order and the L2 thread processes all outstanding 

requests before reaching the barrier, consistency is preserved between all host threads. 

4 EVALUATION OF SIMULATOR DESIGN ALTERNATIVES 

In order to select the best parallel simulator design from the alternatives presented in Section 3, 

each design decision must be studied with regard to performance tradeoffs.  Developing a 

simulator for each alterative would be very costly in terms of design time and complexity.   

Instead, several MPI-based microbenchmarks were developed to enable study of the tradeoffs 
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associated with the parallel algorithm alternatives when executed on the target system.  Key 

components of the full-fledged simulator are abstracted and provided as parameters to a much 

simpler parallel program that, in essence, simulates the behavior of the final application.  The 

approach is much simpler than the analytical models of WWT found in [12], trading accuracy for 

rapid prototyping. 

4.1 Evaluation Platform 

The purpose of the microbenchmarks is to model the expected communication behavior of the 

parallelized simulator with reasonable accuracy.  In this section, we consider the parameters of the 

simulator necessary to describe its communication pattern, introduce the design space that will be 

explored, and describe the experimental platform on which the microbenchmarks and, ultimately, 

the parallel CMP simulator will be executed. 

4.1.1 Simulation Parameters 

As in most parallel applications, the performance of a parallel CMP simulation is largely limited 

by the communication.  The communication consists of two components:  data-value 

communication between the separate L1 and shared L2 caches of the target system and clock-

cycle synchronization.  The latter is largely determined by the parallel algorithm and is a key 

component for microbenchmark evaluation.  The former is a product of the simulated application 

and the timing simulator.  For simplicity, we will abstract the cache-to-cache communication 

pattern using parameters measured from a sequential version of the simulator. 

The simplest model for the cache transactions involves only two parameters:  the time 

required to simulate a single clock cycle for a single processor of the CMP, tc, and the average 

number of cache transactions generated each cycle, A.  We define tc in terms of the rate of a 

uniprocessor simulation in cycles/sec, fc.  The microbenchmark simulates the full application by 

simply delaying for tc seconds per simulated clock cycle.  Since experimental analysis shows A to 
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be less than one, the microbenchmarks generate cache requests in a given clock cycle only when a 

randomly chosen value between zero and one is found to be less than A. 

Additional parameters to the microbenchmarks include the number of processors in the target 

CMP, p, and the number of host processor threads in the parallel simulation, N.  The clock 

synchronization frequency depends on the lookahead, in this case the L2 cache access latency, 

and is defined as L.  The parameters and their default values, taken from a sequential version of 

the CMP simulator, are summarized in Table 1. 

Table 1.  Parameters to microbenchmark simulations. 

Parameter Values Description 
tc 1 / fc seconds Simulation latency per clock cycle 
fc 100000 cycles/sec Simulation rate of clock cycles 
A 0.045 accesses/cycle L2 cache accesses generated per cycle 
L 12 cycles Lookahead for parallel simulation  
p 2 – 32 processors Number of processors in target CMP 
N 1 – 16 threads Number of processor threads in host 

 

The tc value reflects the performance of the sequential simulator.  Smaller values indicate a 

faster sequential simulator, therefore more difficult parallelization due to higher communication-

to-computation ratio.  The parameter A is comprised of four access types:  L1 instruction-cache 

misses, L1 data-cache misses, L1 data-cache writebacks, and L1 coherence misses.  Including a 

term for the variance of the A parameter would enable more accurate workload characterization, 

but it will be shown that even a simple model without variance has sufficient accuracy. 

4.1.2 Algorithm Alternatives 

Using the microbenchmark tests, each of the three major design options presented in Section 3 

will be explored:  centralized vs. distributed L2 cache simulation, blocking vs. non-blocking L2 

cache accesses, and null-message vs. barrier clock synchronization.  Table 2 illustrates the naming 

convention we will use in the remainder of this section to distinguish between design alternatives. 
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Table 2.  Parallelization alternatives. 

Name L2 Simulation L2 Accesses Clock Synchronization 
CB Centralized Blocking - 

CBN Centralized Blocking Null-message 
CBB Centralized Blocking Barrier 
CN Centralized Non-blocking - 

CNN Centralized Non-blocking Null-message 
CNB Centralized Non-blocking Barrier 
DN Distributed Non-blocking - 

DNB Distributed Non-blocking Barrier 
 

Note that not all possible combinations are present in the table; when appropriate, the design 

space has been narrowed through the tradeoff analysis presented later in this section.  Also, three 

incomplete designs are examined:  CB, CN, and DN.  These configurations do not conduct any 

form of clock synchronization and therefore could not be used in the full parallel simulator.  They 

are presented as a baseline to establish the impact of clock synchronization communication 

relative to the data communication. 

4.1.3 Experimental Platform 

In the parallel simulator, the vast majority of messages are either target cache requests, cache 

responses, or clock synchronization messages.  A cache request contains an address field, a source 

processor identifier, and a timestamp for a total payload of 32 bytes.   Messages that are 

considered cache requests include line fill and upgrade requests from an L1 to the L2 cache or 

line flush and downgrade requests from the L2 to an L1 cache.  Cache responses consist of the 

same identifying fields as the cache request plus the associated data.  Cache lines are 32 bytes, 

giving cache response messages a total payload of 64 bytes.  Cache responses include both line 

fills from the L2 to a requesting L1 and writebacks from an L1 to the L2.  Clock synchronization 

messages for null-message-based synchronization contain only a 16-byte timestamp, while barrier 
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synchronization allows use of zero-byte messages.  The type of message is identified through the 

MPI_TAG field  and therefore does not add to the payload length. 

The SCI testbed consists of 9 nodes connected in a 3×3 unidirectional torus.  Each node 

contains two 733-MHz Pentium-III processors using a Serverworks LE chipset and 256 MB of 

PC133 SDRAM.  The SCI adapters are from Dolphin and Scali [30] and feature a link speed of 

4.0 Gbps with a 32-bit, 33-MHz PCI interface.  Version 2.1.2 of Scali’s implementation of MPI, 

ScaMPI, provides the messaging layer. 

The Myrinet testbed consists of 9 nodes connected through an M2L-SW16 16-port switch.  

Each node features dual 600-MHz Pentium-III processors and an i840 chipset with 256 MB of 

PC100 SDRAM.  The Myrinet adapters have a link speed of 1.28 Gbps with a 64-bit, 66-MHz 

PCI interface.  GMPI 1.2.3 is used for the messaging layer. 

The disparity in processor clock frequency between the SCI and Myrinet testbeds is negated 

by the fact that the per-cycle computational delay, tc, is measured in absolute seconds.  Therefore, 

both platforms assume the same uniprocessor simulation rate.  Any differences measured in 

performance will be due to the communication delay alone. 

Figure 5 compares the latencies of SCI and Myrinet.  The plotted data is for one-half of the 

round-trip time (RTT) of an MPI message of specified size.  SCI provides a much lower latency 

than Myrinet, particularly for small packet sizes.  The 32-byte cache request messages have a 

latency of about 7.1 µs under SCI and almost 19 µs with Myrinet.  The larger cache response 

messages require latencies of 10.7 µs for SCI and 19.1 µs for Myrinet.  The small clock 

synchronization messages have an extremely low latency with SCI at 5.2 µs for an 8-byte 

message in the null-message scheme or 4.5 µs for a zero-byte barrier message.  Myrinet shows no 

advantage to very small messages, requiring about 17.6 µs for either size. 
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Figure 5.  RTT/2 latencies for MPI messages over SCI and Myrinet.        

4.2 Microbenchmark Results 

In this section, the microbenchmarks are used to determine the best design alternative from those 

discussed above.  First, the combinations of L2 simulation, access approach, and clock 

synchronization protocol will be examined through experiments run on the SCI testbed.  Then, the 

performance of the optimal scheme will be compared against the same on the Myrinet testbed.   

In the following experiments, it should be noted that N refers to the number of host processor 

threads.  For the distributed L2 simulations, there are N total threads in the parallel simulation.  

For the centralized L2 simulations, an additional thread is used for the L2 cache requiring N + 1 

total threads.  When parallel efficiencies are provided, the efficiency is in reference to the total 

number of threads as appropriate for the L2 simulation. 

The mapping of host threads to nodes on the testbed is one-to-one except when N = 16.  

Because the SCI testbed is limited to 9 nodes, two processor threads are run on each SMP node, 

sharing a single SCI interface.  When a centralized L2 is required, the L2 thread is run alone on 

the ninth node.  The same configuration is used on the Myrinet testbed. 

4.2.1 Parallelization Schemes 

The first set of microbenchmark experiments makes use of a centralized L2 cache.  Figure 6a 

shows the performance with blocking L2 accesses while Figure 6b demonstrates non-blocking 
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performance.  Both figures compare the speedups obtained with null-message and barrier 

synchronization.  Two baselines are provided:  an ideal speedup and the speedup when no clock 

synchronization is performed.  The ideal speedup is defined as the number of processor threads. 
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Figure 6.  Microbenchmark performance predictions for centralized L2 cache schemes on SCI 
testbed (p = N, fc = 105, A = 0.045, L = 12). 

The first trend evidenced in Figure 6 is that the CB and CN approaches both track well with 

the ideal.  Furthermore, there is very little difference between CB and CN because the L2 requests 

from each processor are very infrequent.  However, a large reduction in performance results when 

clock synchronization is added.  This reduction is due to the fact that host processors must wait 

even when they do not have a target L2 request of their own when other target processors have 

requests.  As p increases, the probability of at least one target processor performing a request and 

therefore requiring the others to wait is increased. 

With null-message synchronization taken into account, Figure 6 shows a maximum speedup 

of about 2 for both CBN and CNN schemes with N = 16.  Barrier synchronization fares much 

better, particularly with non-blocking accesses, showing a speedup of 3 for CBB and 5 for CNB.  

The benefit of non-blocking accesses in the barrier approach is that all host processors can 

proceed to the barrier even if there are outstanding requests.  With blocking accesses, any 

processor making an L2 request will arrive at the barrier much later than those that do not make a 
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cache access.  Once again, as p is increased, the probability of a single processor slowing the rest 

increases. 

The difference between the performance with and without clock synchronization and the 

difference between the two types of synchronization can be explained by examining the type and 

number of messages that the L2 thread must handle.  Figure 7 shows the number of messages sent 

and received by the L2 thread per simulated clock cycle.  Figure 7a shows the number of cache 

requests, cache responses, and null messages processed in the CNN scheme, while Figure 7b 

shows the requests, responses, and barrier messages for CNB.  In the simplified microbenchmark 

approach, the number of messages sent by the L2 equals the number received for each type.  Also, 

the messages are evenly distributed between each of the processor threads. 
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Figure 7.  Messages handled per simulated clock cycle by centralized L2 cache with non-blocking 
accesses on SCI testbed (p = N, fc = 105, A = 0.045, L = 12). 

As Figure 7 illustrates, the amount of traffic for clock synchronization greatly exceeds the 

cache traffic, particularly for large values of N.  As described in Section 4.1.3, SCI provides a 

latency of 10.7 µs for the large cache responses and lower latencies for the other messages.  If all 

messages were of the larger variety, up to 93000 messages could be serviced by the host per 

second or 93000 / fc = 0.93 messages per target clock cycle.  Thus, the performance becomes 

communication-bound at N ≥ 8 where more messages per cycle are required. 
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Figure 7 also illustrates a large difference between the number of null messages generated in 

CNN verses the number of barriers in CNB.  The number of barriers scales linearly with N and is 

also dependent on L.  Since the cache traffic also scales with N, the barrier messages account for a 

constant 65% of the total traffic for all values of N for the combination of L and A used. 

By contrast, null messages are sent whenever a thread reaches a limit based on the lookahead.  

To understand why the number of null messages grows faster than N, consider a simple system 

with two processor threads, both initially at simulated clock cycle to.  The target processors in the 

first thread do not make any cache accesses and proceed to cycle to + L before the host sends a 

null message.  A target processor in the second thread makes a cache request in cycle to + 1.  The 

L2 must wait until the first thread sends its null message before deeming it safe to process the 

second thread’s request.  At that time, it can respond to the first thread’s null message with 

permission to proceed to cycle to + 1 + L (this is because a request may still arrive from the second 

thread with time stamp to + 2 that may affect the first thread).  Therefore, the null message grants 

the first thread permission to simulate only one additional clock cycle before another null 

message will be required. 

As the number of threads in the system is increased, the probability of at least one thread 

making a request in any given clock cycle increases.  Therefore, due to the effect described above, 

the null messages in CNN effectively grant permission for fewer clock cycles of simulation for 

increased N.  Since the number of threads sending null messages increases and the null messages 

become more frequent, the number of null messages increases faster than N.  For the data in 

Figure 7, null messages account for only 58% of the total traffic in a 2-thread system.  In the 16-

thread system, the null messages account for 86% of the total traffic. 

The results from Figure 6 indicate that the combination of non-blocking L2 accesses and 

barrier synchronization perform best.  In Figure 8, the distributed L2 approach is compared to the 
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centralized L2 by using DNB and CNB schemes, respectively.  For a baseline comparison without 

clock synchronization, DN and CN performance is also shown.  Figure 8a illustrates the parallel 

efficiency while Figure 8b shows the speedup. 
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Figure 8.  Microbenchmark performance predictions for centralized vs. distributed L2 with non-
blocking accesses and barrier synchronization on SCI testbed 

(p = N, fc = 105, A = 0.045, L = 12). 

The efficiency of the distributed approach declines as the number of threads is increased, 

even for the DN scheme that does not perform clock synchronization.  This decline in efficiency 

is due to the fact that the L2 processing task is distributed between all of the processor threads, 

thereby slowing the target processor simulation.  The CN scheme, by contrast, increases in 

efficiency due to the N / (N + 1) scaling effect described earlier. 

When barrier synchronization is added, the efficiency of the distributed approach decreases 

rapidly.  This effect is due to the need to communicate a barrier message with every other thread 

in the system in DNB rather than with only the centralized L2 thread in CNB.  This all-to-all 

synchronization requires N times as many transactions as the centralized approach. 

The resulting conclusion is that the distributed L2 is slightly more efficient for a small 

number of host threads, N ≤ 4.  At larger thread counts, the centralized L2 has a slight 

performance and efficiency advantage.  This outcome, coupled with the ability to efficiently 
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model contention effects allowing more flexibility in exploring target architectures, gives the edge 

to a centralized L2 design. 

4.2.2 Interconnect Selection 

With the conclusion that the CNB approach shows the greatest performance potential, we now 

turn to a comparison of the underlying network for the parallel simulation platform.  In Figure 9, 

the parallel efficiency and speedup of the CNB-based microbenchmarks are shown for both the 

SCI and Myrinet testbeds.  The CN results are also provided as a baseline.  
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Figure 9.  Microbenchmark performance predictions for SCI vs. Myrinet testbed with centralized 
L2 and non-blocking accesses (p = N, fc = 105, A = 0.045, L = 12). 

The performance of both interconnects with the CN baseline is similar up until N = 8, where 

the Myrinet platform shows a decrease in parallel efficiency.  From Figure 7, it can be seen that at 

this system size, the L2 must process 0.36 request and response transactions per simulated clock 

cycle.  As previously discussed, the 10.7 µs latency of SCI allows the host up to 0.93 transactions 

per simulated target clock cycle.  Myrinet, however, shows a latency of 19.1 µs, allowing only 

0.52 host transactions per simulated cycle.  Though this appears to be sufficient capacity for the 

required target cache traffic, in practice the effective latency is increased due to contention when 

different hosts make multiple requests simultaneously.  At 0.36 transactions per clock cycle, the 
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load on the Myrinet network exceeds 50% and contention is frequent. The SCI performance trails 

off similarly at N = 16 where 0.72 cache transactions are made per target clock cycle. 

When barrier synchronization is added, the performance advantage of SCI becomes even 

more pronounced.  Not only can the SCI network handle a higher load due to its decreased 

latency, but the majority of the traffic consists of zero-byte barrier messages.  As shown in 

Section 4.1.3, ScaMPI provides a 4.5 µs latency for these messages while Myrinet requires 17.6 

µs.  The result is a potential speedup at N = 16 of 4.9 using SCI and only 2.7 with Myrinet.   

5 PARALLEL SIMULATOR RESULTS AND ANALYSIS 

Based on the results from the previous section, the SimpleCMP simulator [7], a derivative of 

SimpleScalar [5], was parallelized using the CNB scheme and subsequently executed on the SCI 

testbed.  In this section, the simulation platform is described, parallel performance is explored, 

and the measured performance is compared to the microbenchmark predictions from the previous 

section to demonstrate the validity of the microbenchmark approach. 

5.1 Simulation Platform 

SimpleCMP performs trace-driven simulations of a 32-bit, MIPS-like instruction set [27], 

complete with register renaming, out-of-order execution, superscalar issue, and detailed cache and 

branch prediction logic.  In addition to the CNB parallelization scheme, the simulator was also 

modified to more closely resemble the hardware of an Alpha 21264 [21] by replacing the register 

update unit (RUU) with a reorder buffer and rename logic.  Separate issue queues are provided for 

integer and floating-point instructions, and the pipeline depth matches the design of the 21264.  

The dual, synchronized register-file of the 21264 was not implemented.  The cache subsystem is 

directory-based with point-to-point links from each L1 to the shared L2.  Table 3 shows the key 

architectural parameters for each individual processor in the simulations. 
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Table 3.  Processor architecture parameters. 

Parameter Value 
Fetch/Issue/Retire Width 4 instructions 
Rename Registers 128 
Integer Issue Queue 64 instructions 
Load/Store Issue Queue 32 instructions 
Integer ALUs 4 
L1 cache ports 2 
Branch Predictions/cycle 1 

Branch Predictor 
Global: 12-bit history, 4k × 2-bit saturating counters 
Local: 1k × 10-bit history, 1k × 2-bit saturating counters 
Select: 12-bit global history, 4k × 2-bit saturating counters 

Branch Target Buffer 2048 entries, 2-way associative 
Return Address Stack 32 entries 
Minimum Misprediction Latency 8 cycles 
L1 I-Cache 64 kB, 2-way associative, 32-byte lines, 1-cycle latency 
L1 D-Cache 64 kB, 2-way associative, 32-byte lines, 1-cycle latency 
Unified L2 Cache 8 MB, 4-way associative, 32-byte lines, 12-cycle latency 
Memory Access Latency 100 cycles, 8 bytes/cycle 

Table 4.  Selected SPLASH-2 benchmark components. 

8-processor Parameters Benchmark Input Dataset Instructions fc A 
LU 256x256 matrix, 16k blocks 66 M 131k 0.0147 

Ocean 258x258 grids, 4 time-steps 330 M 102k 0.0463 
Radix 256k integers, radix = 1024 16 M 131k 0.0355 

Raytrace teapot.env 282 M 98k 0.0103 
Average - 174 M 107k 0.0267 

 

In order to evaluate the parallel simulator under a variety of workload conditions, a 

representative subset of the SPLASH-2 benchmarks [34] was selected.  SPLASH-2 provides a 

suite of shared-memory benchmarks for parallel systems and includes several kernel and 

application components.  Table 4 lists the four benchmarks used, two kernels and two 

applications:  LU, ocean, radix, and raytrace.  The table also provides the measured values for fc 

and A when executed on an 8-processor CMP using the sequential version of SimpleCMP.  These 

values vary slightly for different degrees of parallelism, with fc generally decreasing and A 

increasing with higher target processor counts. 
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All statistics are gathered only from the parallel portion of the benchmarks, neglecting any 

sequential start-up code and generation of working-set data.  This common practice assumes that, 

with realistic workloads, the initialization code is insignificant compared to the overall execution 

time.  In practice, the non-parallel part can be sped up considerably by using only the front-end of 

the trace generator and not the timing simulator, or even eliminated entirely through 

checkpointing.  Table 4 provides the approximate number of instructions that comprised the 

parallel portion of each benchmark. 
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Figure 10.  Sequential execution time for SPLASH-2 benchmarks. 

As a baseline for comparison, Figure 10 shows the execution time for the sequential version 

of SimpleCMP for each benchmark and the overall average measured on one of the SCI testbed 

nodes.  The execution time remains relatively constant up to an 8-processor CMP despite an 

increase in target complexity because fewer cycles are necessary due to the benchmarks’ near-

linear speedup.  A sharp increase for 16- and 32-processor CMPs occurs as the simulator working 

set exceeds the 256 kB L2 cache of the host systems for large target processor counts. 

The sequential simulation scheme described in Section 2.2 results in highly reduced locality 

at large processor counts due to the sequential iteration over each processor for every simulated 

clock cycle.  In addition, the capacity required to hold all frequently used data increases.  The key 

data elements for each iteration are the decoded instructions which are 236 bytes in length.  Each 
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processor can have up to 128 such instructions in-flight, for a total of 29.5 kB of data.  With eight 

processors in the simulated CMP, 236 kB is required to hold just the decoded instructions.  In 

addition, the L1 caches and branch predictors are also frequently accessed.   

A 16-processor CMP simulation has twice as large a working set as an 8-processor CMP and 

therefore much poorer data locality.  It is important to note that even the 32-processor CMP 

simulation fits in the 256 MB main memory of one of the testbed nodes, so swapping to disk is 

not an issue.  Such a performance limitation would be relatively easy to fix by increasing the 

memory capacity, but cache sizes are much more difficult and expensive to increase. 

5.2 Parallel Performance 

The SPLASH-2 components from Table 4 were simulated on the parallel CMP simulator for a 

variety of target CMP sizes and processor thread counts.  Figure 11 shows the speedup obtained 

over the sequential version of the simulator.  As before, the horizontal axis refers to the number of 

processor threads and does not include the L2 thread. 

Several trends are apparent from the results in Figure 11.  First, for CMPs of 8 processors 

and less, the speedup is relatively modest, reaching almost 4 for 8 threads.  There is a slightly 

increased speedup for an 8-processor CMP over a 4-processor CMP even when both systems are 

simulated with the same number of host threads.  This increase is due to the fact that the 

synchronization overhead is a lower percentage of the total communication time when each host 

thread simulates more than one target processor.  In effect, twice the number of instructions and 

twice the number of L2 cache requests can be simulated per barrier synchronization. 

For 16-processor CMPs, the speedup shows a somewhat larger improvement.  At 32-

processors, the performance is markedly improved.  This effect can be explained by the improved 

cache locality in the parallel simulation.  As illustrated in Figure 10, cache locality becomes 

problematic in a uniprocessor simulation of CMPs of this size.  In the parallel approach, however, 
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a 16-thread simulation requires only one or two target processors per host thread for a 16- or 32-

processor CMP, respectively.  The parallelization effectively scales the size of the host L2 cache 

with the number of threads, improving the performance beyond the simple computational overlap. 
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Figure 11.  Speedup for selected components of SPLASH-2 for target CMPs of varying size. 

Figure 12 better illustrates this effect by showing the parallel efficiency (relative to the total 

number of threads, including the L2 thread).  For system sizes of between 2 and 8 threads, parallel 

simulation of the 32-processor CMP shows a superlinear speedup due to the increased cache hit 

rate.  At 16 threads, the reduced efficiency predicted by the microbenchmarks and illustrated in 

Figure 8 reduces the performance to sublinear levels. 

Interestingly, the improved cache locality shows benefit even in the simplest case of a single 

processor thread plus the centralized cache node.  The theoretical maximum efficiency is 0.5 in 

such a system, but the 32-processor CMP simulation exceeds this efficiency for all benchmarks 

while the 16-processor CMP simulation does so for the LU and radix benchmarks.    
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Figure 12.  Parallel efficiency for selected components of SPLASH-2 for CMPs of varying size. 

5.3 Comparison to Microbenchmarks 

In order to assess the accuracy of the microbenchmarks in predicting the parallel simulator 

performance, microbenchmarks were run for each fc and A value in Table 4 corresponding to one 

of the SPLASH-2 benchmarks and the results averaged.  Due to the cache effects with CMP 

configurations of greater than 8 target processors for which the microbenchmarks do not account, 

comparisons are made for an 8-processor CMP with host thread counts from N = 1 to N = 8.  The 

average result for the CNB-based microbenchmarks and the measured performance on the fully 

implemented simulator are shown in Figure 13. 

The CNB microbenchmark does not track particularly well with the actual parallel simulator 

performance.  At N = 1, the difference is only 9.8%, but the disparity increases to 25% for N = 8.  

The disparity was found to be largely due to a neglected effect that has a non-negligible impact on 

the overall performance.  Namely, target cache requests from the L1 caches to the L2 cache can 
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cause the L2 to require a writeback of dirty data from a second L1 in order to satisfy the first 

request.  In the implementation used in the parallel simulator, the L2 blocks on such a request 

until the dirty line is returned by the second L1.  Though the writeback transaction is included in 

the A parameter, the L2 cache blocking effect was not accounted for in the CNB microbenchmark. 
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Figure 13.  Comparison of microbenchmark prediction and actual parallel simulator performance. 

The CNB microbenchmark was modified to accept another parameter:  the probability that an 

L1 request will require a writeback request and concomitantly block in the L2.  For the 

benchmarks studied, this probability ranged from 0.3% to 14% with an average of 9.3%.  Using 

the measured probabilities for each SPLASH-2 component, the modified microbenchmarks were 

executed and the results plotted in Figure 13. 

As illustrated in the figure, the modified CNB microbenchmark predicts the performance of 

the parallel simulator with much greater accuracy:  within 10% of the measured results for the 

system sizes shown.  The remaining difference can be attributed to the fact that the actual 

execution of the benchmarks frequently results in bursty L2 accesses, often synchronized with 

barriers or locks in the parallel code, reducing the performance as contention increases the latency 

for each transaction.  By contrast, the microbenchmarks yield a more uniform distribution of 

cache accesses.  Including a variance term in the microbenchmarks could account for this effect, 

but the results are already within acceptable limits. 
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6 RELATED RESEARCH 

Much existing research exists in the field of parallel simulation of multiprocessors.  The 

Wisconsin Wind Tunnel simulates a parallel, CC-NUMA system on various parallel systems 

including a Myrinet-connected cluster of workstations [29],[24].  Synchronized Active Messages 

provide the messaging layer rather than MPI as in our study.  Also, WWT makes use of direct-

execution simulation with each parallel process running on a separate CPU, capturing only the 

memory accesses and sending them through a sequential timing simulation of the memory 

hierarchy.  This approach does not offer flexibility in the processor model and is unable to model 

effects such as issue widths, speculative memory accesses, and out-of-order execution.  Analytical 

modeling has been used to approximate the performance of WWT for a variety of system sizes 

[12].  Interestingly, [12] shows an optimal cost/performance ratio around 16 to 32 processors in 

the target system due largely to memory costs, mirroring the cache effects noted in our study.  

The Integrated Simulation Environment (ISE) takes a similar approach for simulation of 

MPI-based parallel programs [16].  In ISE, MPI code executes natively on distributed nodes in a 

cluster with the MPI function calls being intercepted and sent to a centralized, sequential 

simulation of the interconnect.  This “software-in-the-loop” approach allows flexibility in 

selecting the interconnect type and topology but is limited in performance by the relatively slow 

interconnect simulation. 

In [15], parallel simulation is applied to a parallel digital signal processor (DSP) system.  In 

this study, the parallel programming language Linda is applied in a clustered environment to 

achieve speedup on a multi-DSP simulation despite the use of low-performance, 10 Mbps 

Ethernet as the interconnect. 

The RSIM [26] simulation environment provides great flexibility in the configuration of the 

individual processors in a simulated multiprocessor, but the simulation itself runs only on a 
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uniprocessor.  Rather than parallelizing the simulator, DirectRSIM [11] provides a performance 

improvement by adapting RSIM to be trace-driven instead of execution-driven.  Using an 

approach similar to RSIM, the MINT [33] multiprocessor simulator has even been modified to 

simulate a CMP [22], but neither approach involves parallel simulation. 

7 CONCLUSIONS 

Simulation of parallel systems is an important tool in evaluating design alternatives.  As the 

complexity of such systems increases down to the chip level with the advent of CMP-based 

systems, the simulation overhead becomes increasingly prohibitive.  In this paper, an MPI-based 

parallel simulation environment was presented to reduce the execution time of performance-level 

CMP simulations running on a cluster of workstations connected by a high-speed interconnect. 

The parallel simulation is a natural extension of conventional, sequential simulation of a 

uniprocessor combined with traditional, event-driven parallel simulation techniques.  The 

proposed shared-L2 design of future target CMP architectures requires a tighter coupling of 

shared communications in the host platform than traditional DSM-based target systems, making 

the selection of parallel algorithm and a high-performance network very important for the host. 

Several design alternatives were considered, including centralized vs. distributed simulation 

of the target L2 cache, blocking vs. non-blocking L2 accesses, and null-message vs. barrier clock 

synchronization.  Through MPI-based microbenchmarks, the optimal combination was found to 

be a CNB scheme combining centralized L2, non-blocking accesses, and barrier synchronization 

with a predicted speedup of around 5 for 16 threads.  The microbenchmarks also demonstrate that 

the low-latency communication afforded by SCI makes it a more suitable interconnect for the host 

platform than Myrinet. 
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Performance results for a fully implemented parallel simulator were presented for a variety of 

workloads.  Due to increased cache capacity of the parallel platform, the results show higher-than-

predicted speedups of between 12 and 16 when simulating a large CMP architecture with 16 

processor threads on 9 dual-CPU cluster nodes.  The parallel simulation results are shown to 

differ somewhat from the microbenchmark predictions even without the cache effect, but the 

difference is largely accounted for with a slight modification to the microbenchmarks. 

Future work in this area could pursue several avenues.  Larger system sizes, in terms of the 

numbers of simulated CMP processors in the target or processor threads and cluster nodes in the 

host, could be studied.  CMP processor counts were restricted to 32 in this study due to the fact 

that limitations in VLSI technology will likely yield CMPs of this size or smaller in the near 

future, but further advances or simpler processor designs may allow chip-level architectures with 

hundreds of processors.  The cluster node counts and, by extension, processor threads in this 

study were limited by the hardware available. 

Further study could also be directed at more efficient parallel simulation algorithms.  For 

example, a more aggressive clock synchronization scheme might speculatively execute 

instructions past the null-message or barrier clock cycle, rolling back the computation if an 

earlier-stamped message is received.  The speculative nature of the processor pipeline being 

simulated would facilitate such an approach with little extra overhead. 

Parallel simulation should increase in importance as parallel systems become larger and more 

complex.  Fortunately, the existence of such systems will also enable parallel simulators to study 

the next-generation design alternatives with greater speed and efficiency.   As the simulation 

application itself becomes more complex, techniques such as microbenchmark-based evaluation 

of design alternatives will become increasingly valuable in assessing the most effective 

parallelization technique for a given system. 
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